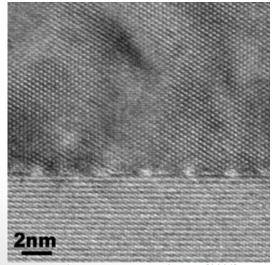
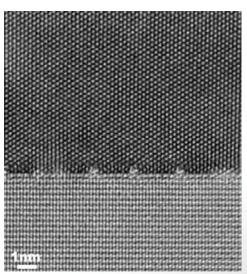


Préparation d'échantillons pour l'observation au Microscope Electronique en Transmission (MET) en Science des Matériaux

Danièle LAUB, EPFL-SB-CIME, Lausanne CH

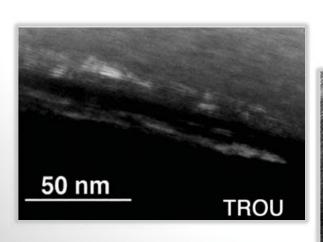


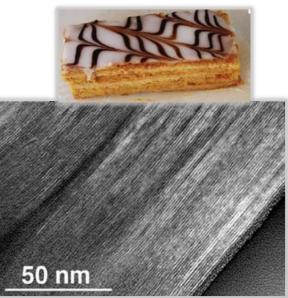
Aperçu Préparation d'échantillon D.Laub 2015



Pourquoi la préparation est-elle si importante?

section transverse, axe de zone [0001], amincissement ionique (>2kV)


section transverse, axe de zone [0001 , amincissement ionique (jusqu'à 100V)


Gatan images

Pourquoi la préparation de l'échantillon est-elle si importante?

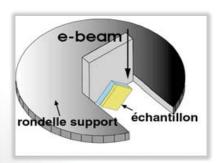
Aperçu Préparation d'échantillon D.Laub 2015

2

INTRODUCTION

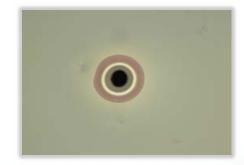
Taille et Épaisseur de l'échantillon:

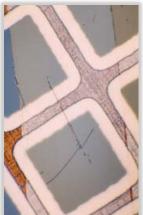
- Diamètre impératif: 2,3 ou 3 mm
- 1) Réduire la taille d'un échantillon massif
- 2) Utiliser un support 2,3 ou 3 mm pour les échantillons plus petits
- -Épaisseur: variable entre environ 20 et 200 nm Dépend de:
- 1) la composition chimique du matériau
- 2) du type d'analyse à effectuer (HR, EELS, diffraction, etc.)

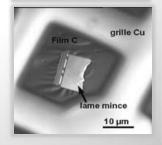


INTRODUCTION

Un échantillon mince, d'accord, mais.....quoi, où, comment ???


Un bord





Toute la lame mince

Un trou

Aperçu Préparation d'échantillon D.Laub 2015

5

INTRODUCTION

L'échantillon doit aussi être:

- conducteur électrique
- stable sous vide
- exempt de contaminants hydrocarbures
- ne pas contenir d'artéfacts de préparation qui pourraient conduire à une observation ou à une analyse erronée

Il sera toutefois impossible de réunir toutes ces conditions, quelle que soit la préparation choisie.

L'échantillon, une fois terminé, doit répondre aux exigences qui permettent l'analyse spécifique à laquelle celui-ci est destiné.

Métal

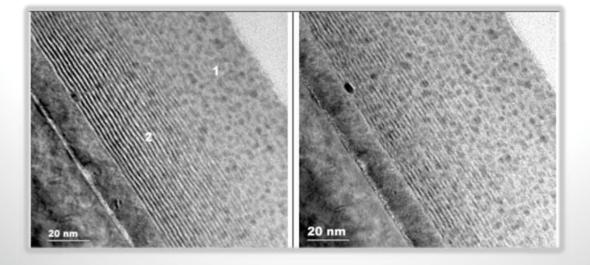
Minéraux

Matériau

Polymère

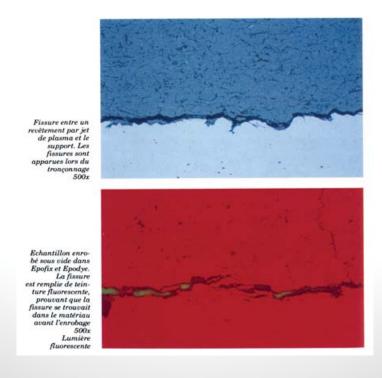
matériau

Démarche à suivre pour choisir le type de préparation en fonction du problème en science des matériaux Type de Géométrie Structure Phases Propriétés Propriétés matériau du matériau chimiques électriques physique physiques Type Matériau massif Compact Dur Conducteur Semiconducteur Monophasé d'analyse Céramique Matériau en couche Mou Poreux Isolant de la mince, multicouhes biologique Multiphasé Fragile microstructure Matériau divisé : Matériau mixte-En phase fibres, plaquettes, Ductlie composite liquide sphères, nanotubes Resistant Choix de l'orientation Aménagement de la Choix de la méthode de méthode de préparation préparation en fonction De l'échantillon en fonction du problème du type d'analyse


Aperçu Préparation d'échantillon D.Laub 2015

-Quelconque -Particulière

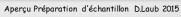
ARTEFACTS


Ru/Zr/SrTiO₃ Préparation: polissage Tripode + bombardement ionique final

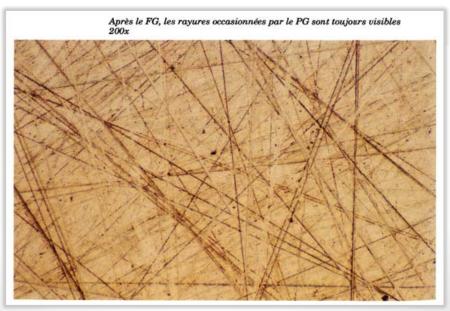


Comment observer la vraie structure du matériau?

Comment observer la vraie structure du matériau?



Comment observer la vraie structure du matériau?



11

Comment observer la vraie structure du matériau?

Comment observer la vraie structure du matériau?

Aperçu Préparation d'échantillon D.Laub 2015

13

LES TYPES DE PREPARATIONS:

- Mécanique:
- · Polissage mécanique jusqu'à transparence aux électrons
 - Clivage
 - · Ultra-microtomie

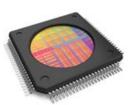
- Broyage
- Dispersion de particules transparentes aux électrons
- Ionique
- Bombardement ionique après polissage, ...
- FIB

- Chimique
- · Polissage électrolytique
- · Polissage ou attaque chimique

Mécanique-physique • Réplique (directe et indirecte, extractive)

Physique

- Déposition en lame mince
- · etc.



Matériaux - Formes de préparation - Direction d'observation

TYPE DE MATERIAUX

- Semiconducteurs
- Métaux
- Polymères
- · Mineraux
- · Ciments
- Céramiques
- · Bois, papier
- Etc.

LES FORMES DE PREPARATION:

- Vue plane
- Coupe transverse
- Coin
- Dispersion (poudre)
- Réplique

(matériau radioactif, mat. de grande dimension)

LES DIRECTIONS D'OBSERVATION:

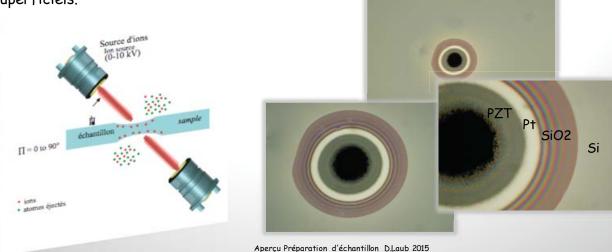
- Vue plane
- Section transverse
- Orientation particulière
- Orientation quelconque

Aperçu Préparation d'échantillon D.Laub 2015

15

16

LE BOMBARDEMENT IONIQUE

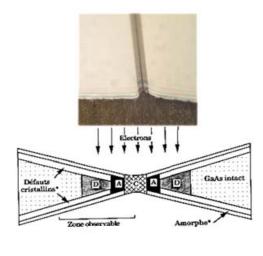

Des ions de quelques kV sont créés par une décharge électrique puis accélérés en un faisceau dont la densité de courant est gaussienne,

et finalement dirigés sur la zone à amincir

Gaz utilisés:

Gaz neutres (argon, etc.)

<u>Effet recherché</u> : attaque par destruction du réseau cristallin et éjection des atomes superficiels.



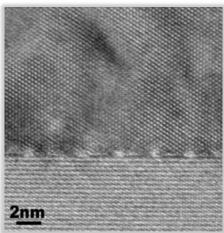
LE BOMBARDEMENT IONIQUE

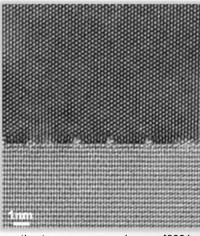
COUPE TRANSVERSE APRÈS BOMBARDEMENT IONIQUE

Aperçu Préparation d'échantillon D.Laub 2015

17

Artefacts:


- La création d'une rugosité de l'échantillon. L'épaisseur n'est alors plus constante.
- La création d'une couche amorphe sur la surface de l'objet qui va diminuer le contraste de l'image en MET et perturber l'observation en haute résolution.
- L'implantation de ions d'argon à l'intérieur du cristal
- Parfois une décomposition du matériau ou un changement de stoechiométrie.
- Une attaque préférentielle aux interfaces, d'une phase particulière ou de grains orientés différemment.
- Une éventuelle transformation de phase due à l'élévation de la température de l'échantillon.



Limitation des effets non désirés:

- Abaissement de la température de l'échantillon (azote liquide)
- Utilisation d'une tension plus faible
- Abaissement de l'angle d'incidence des canons

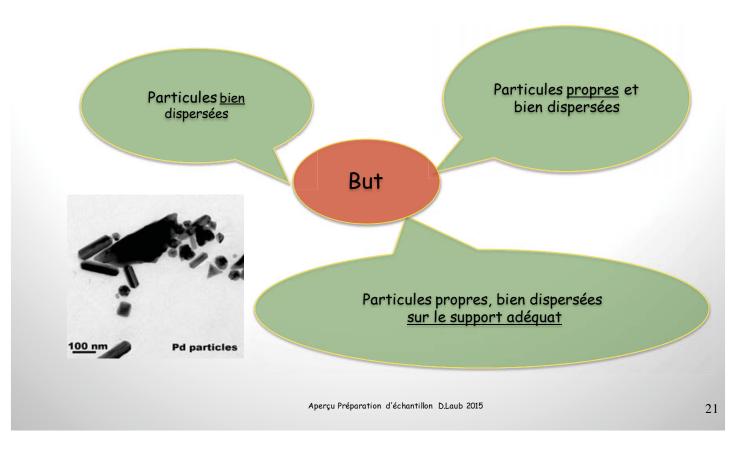
section transverse, axe de zone [0001], amincissement ionique (2kV)

section transverse, axe de zone [0001, amincissement ionique (jusqu'à 100V)

Aperçu Préparation d'échantillon D.Laub 2015

19

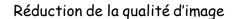
Les différentes techniques

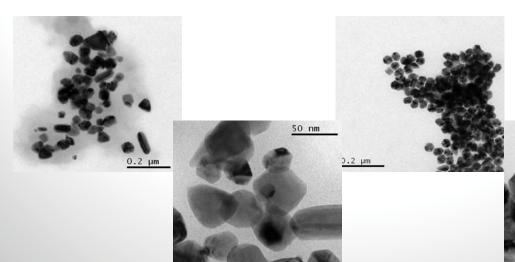

DISPERSION DE NANOPARTICULES TRANSPARENTES AUX ÉLECTRONS

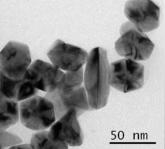
Direction d'observation: aléatoire

Observations:

- Taille et forme des particules
- HRTEM
- Diffraction
- Analyses EDX
- ...


Images MET




Présence de molécules involatiles ou d'espèces inorganiques

Réduction du contraste

NANOPARTICLES: pour quelles applications?

Les propriétés d'un matériau conventionnel changent lorsqu'il est formé de nanoparticules

Les nanoparticules ont une plus grande zone de surface par poids que de plus grandes particules

Plus réactives à d'autres molécules

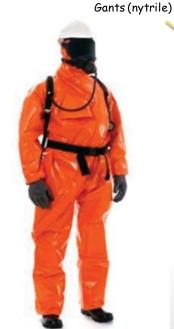
- Lunettes inrayables
- Peintures résistantes à la fissure
- Vernis de protection anti-graffitis
- Panneaux solaires transparents
- Tissus antitaches
- Fenêtres auto-nettoyantes
- Vêtements anti-bactériens (sic!)
- Revêtements céramique pour les cellules solaires

Médecine:

Quelques exemples

- Antioxydant
- o Transporteur de vaccin
- Augmenter la croissance osseuse autour des implants dentaires
- o Peau synthétique (nickel nano + polymère)

Aperçu Préparation d'échantillon D.Laub 2015


23

Travaux avec des nanoparticules ou nanofibres: Règle de sécurité n°1: préparation sous chapelle!

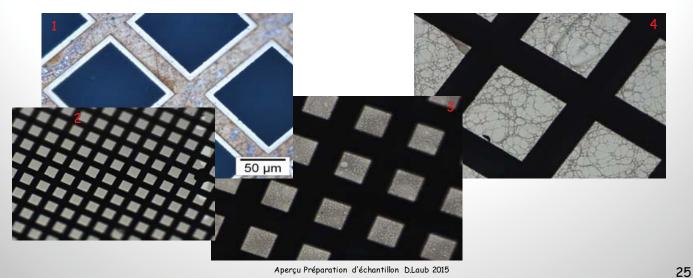
Vraiment pas nécessaire!

Pas nécessaire, mais si vous voulez...

Aperçu Préparation d'échantillon D.Laub 2015

Absolument nécessaire!

24


Sélection de la grille support adaptée

Dépend de l'analyse à effectuer et de la taille des particules

- Standard carbon coated grid (C thickness 25-40 nm) 1
- Ultrathin carbon film (4-5 nm) 2
- Holey carbon film with ultrathin carbon windows (5 nm)
- Holey carbon film 3
- Lacey carbon film 4

· ...

L'utilisation de solvent polaire ou apolaire pour disperser les particules

Polaire, apolaire ou égal?

Toluène: apolaire

Ethanol: polaire

L'utilisation de solvent polaire ou apolaire pour disperser les particules

- Solvents polaire: deux pôles distincts, de charges opposées. La séparation de ces pôles induit un moment dipolaire dans la molécule, dont la norme est le produit de la distance entre les pôles par la charge. Plus la valeur du moment dipolaire est grande, plus la molécule est polaire (oxygène hydrogène)
- Solvent non polaire: la répartition des charges est symétrique dans la molécule, celle-ci est qualifiée d'apolaire (carbone hydrogène)

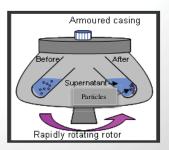
Aperçu Préparation d'échantillon D.Laub 2015

27

Ultrasons pour disperser les particules

Centrifugation des particules

Hielscher Ultrasound


Chauffer peut améliorer la dispersion

Temps de dispersion: de 1 minute à plusieurs heures

•Pour les "laver" ou éliminer un solvent inadéquat

•Pour concentrer les particules en trop petite quantité

Dispersion

Dilution

Concentration

Ultrasons

Prêt à pipetter

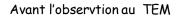
Aperçu Préparation d'échantillon D.Laub 2015

29

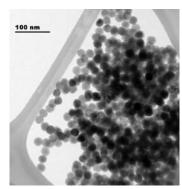
Dispersion

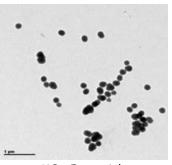
Une goutte sur la grille: 3 méthodes

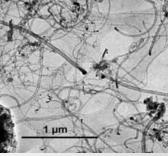
Séchage sous infra-rouge ou lampe de bureau



Utilisation du " perfect loop"

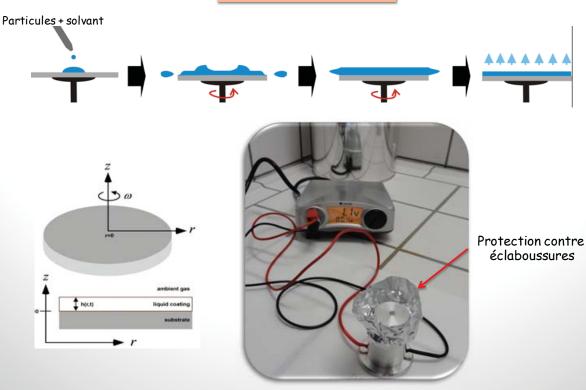

A few examples of dispersion

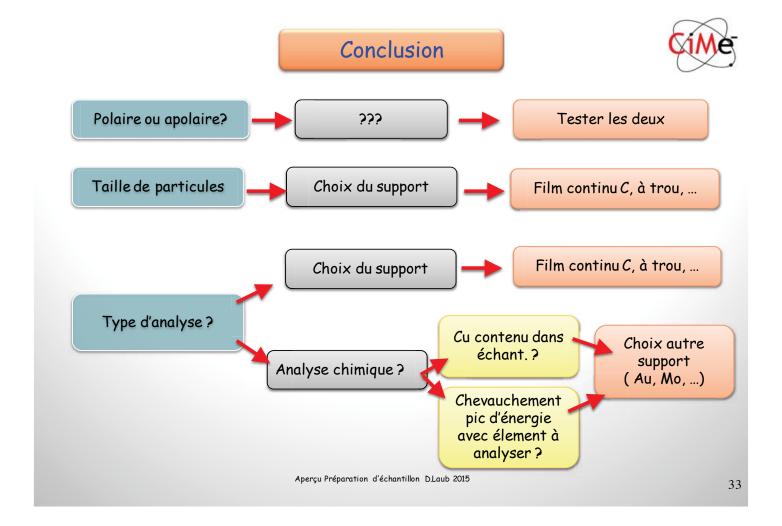



Au moins 1 heure sous infra-rouge ou lampe de bureau = élimination de certains hydrocarbures

Au particles

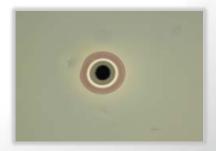
SiO₂_Fe particles


C nanotubes


Aperçu Préparation d'échantillon D.Laub 2015

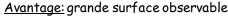
31

Dispersion par Spin coating

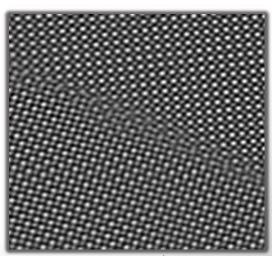


LA VUE EN PLAN

Observation parallèle à l'axe de croissance ou à l'axe préférentiel du matériau.


Observations:

- défauts cristallins
- défauts linéaire (dislocations, ...)
- défauts plans (macles, parois d'antiphase,...)
- ·étude des structures et interfaces granulaires
- Précipitation
- ·etc.



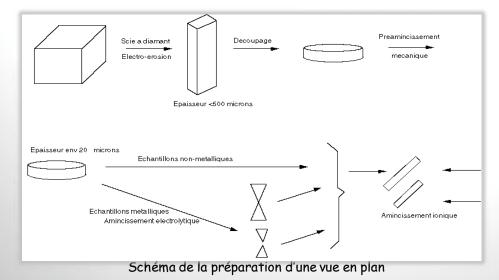
Inconvénient: on ne distingue pas les informations provenant de différentes positions réparties le long de l'axe d'observation

SrTiO₃ joint de grain (J.Ayache)

Vue planaire d'un échantillon supra-conducteur, observation au MET, image en champ clair

Aperçu Préparation d'échantillon D.Laub 2015

Matériaux:


Tous matériaux

Méthodes de préparation:

Dégâts possibles

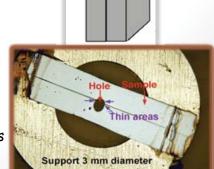
Prép. mécanique + ionique:

- -Introduction de dislocations
- -dégâts d'irradiation
- -amorphisation des couches de surface
- modification de la composition chimique

Prép. Électrolytique:

- contamination de surface
- attaque préférentielle

LA COUPE TRANSVERSE

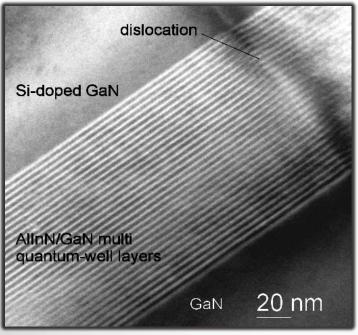

Observation perpendiculaire à l'axe de croissance ou préférentiel du matériau.

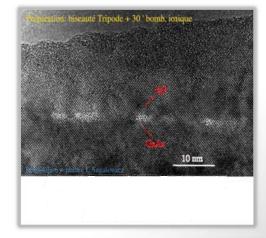
Avantage: observation de l'anisotropie le long de l'axe

<u>Inconvénient</u>: petite surface observable

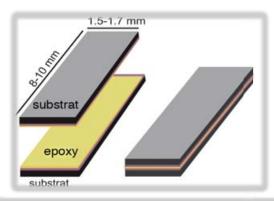
Observations:

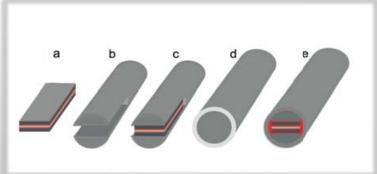
- hétérogénéités le long de l'axe préférentiel
- caractérisation de matériaux en couches
- mesure de l'épaisseur des couches
- détermination de la structure des couches et des interfaces



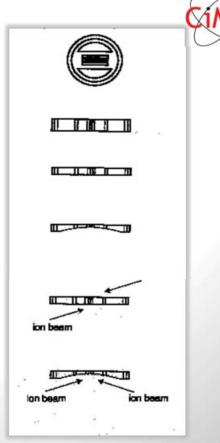

Aperçu Préparation d'échantillon D.Laub 2015

37

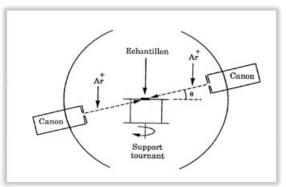


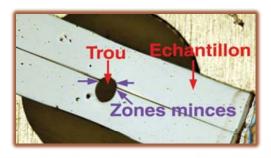


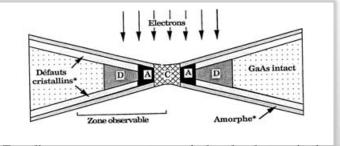
S. Gradechak, EPFL-CIME



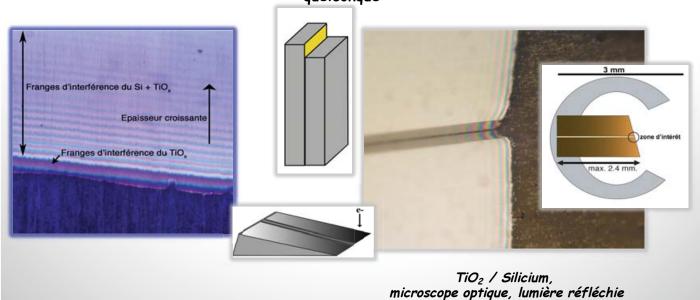
Méthode de préparation





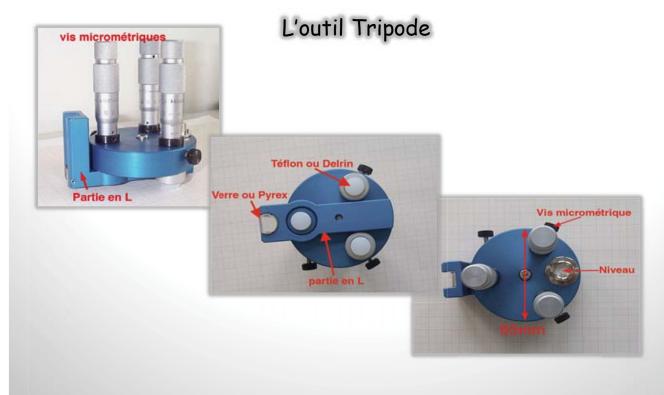


Disposition possible des canons et de l'échantillon dans une installation d'amincissement par bombardement ionique.


Etat d'une coupe transverse après bombardement ionique

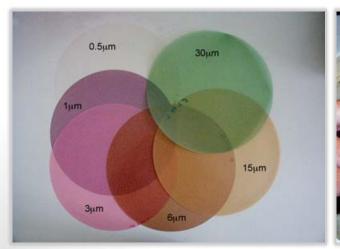
LA TECHNIQUE TRIPODE

Permet un amincissement mécanique, en biseau, jusqu' à la transparence aux électrons ou nécessitant très peu de temps de bombardement ionique Peut-être utilisé pour une vue en plan, une coupe transverse ou une orientation quelconque

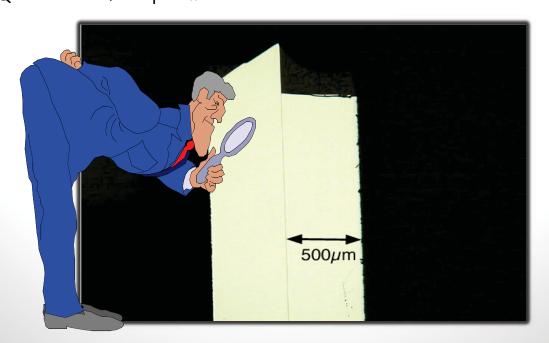


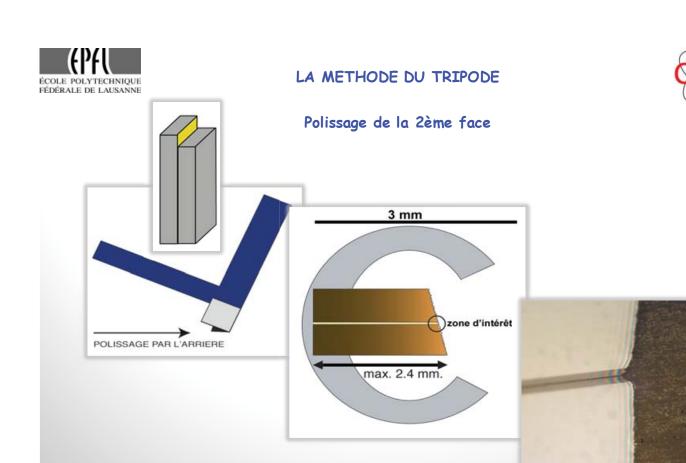
Aperçu Préparation d'échantillon D.Laub 2015

41



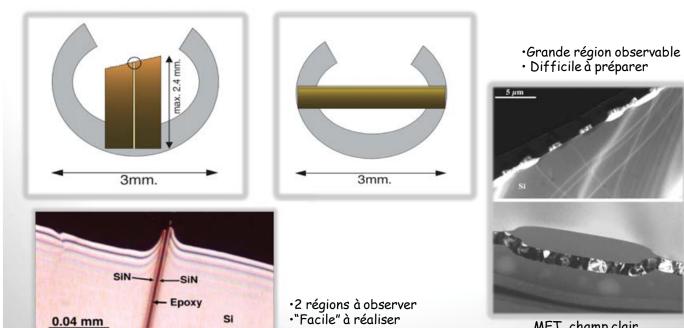
Aperçu Préparation d'échantillon D.Laub 2015


43



LA METHODE DU TRIPODE

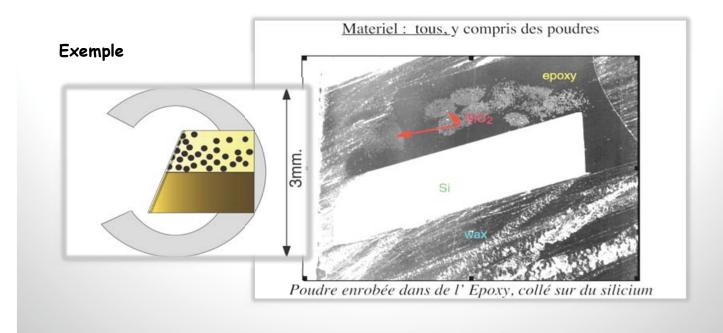
Qualité de surface: poli miroir !!!



45

Comment choisir la bonne orientation de préparation ?

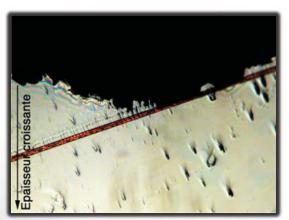
Aperçu Préparation d'échantillon D.Laub 2015

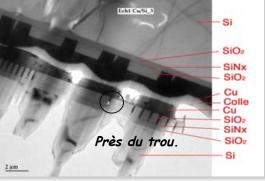


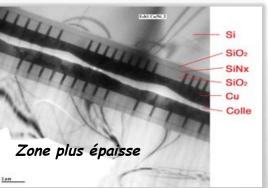
Aperçu Préparation d'échantillon D.Laub 2015

MET, champ clair

Aperçu Préparation d'échantillon D.Laub 2015

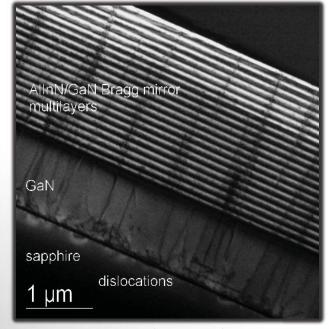

47


LA METHODE DU TRIPODE


CiMe

Exemple: Cu/SiO2/Si coupe transverse

Résultat après bombardement ionique PIPS, 4 keV ,1 canon, angle 5°, puis 15 mn à 2 keV.



Analyse MET F. Cosandey, Rutgers University, USA

Exempl: GaN sur substrat saphir

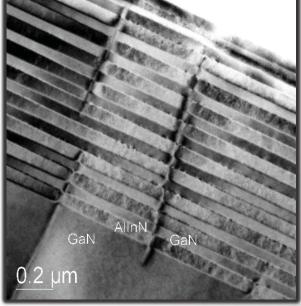
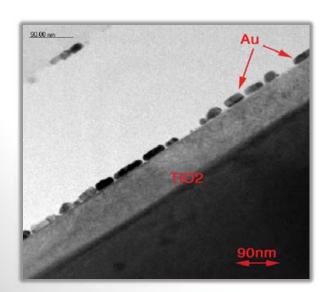


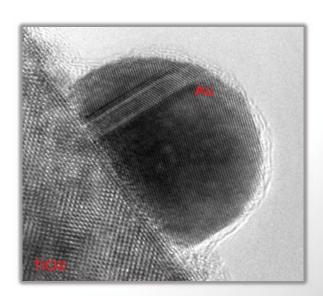
Image MET, champ sombre

Image MET, champ clair

Bombardement ionique: 15 minute, 3 et 2kV, 2 canons, rotation sectorielle, angle 5°

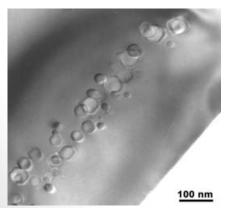
Aperçu Préparation d'échantillon D.Laub 2015


49

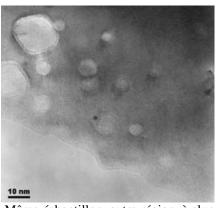


LA METHODE DU TRIPODE

Exemple: particules Au /TiO2, coupe transverse, polissage plan


Ion milled at low incidence angle, sectorial rotation

Images MET: F. Cosandey, Rutgers University



Exemple: implantation He dans silicium

Echantillon de silicium avec implantation de He (cavités) sous la surface. Image TEM en champ clair J.Werckmann, IPCMS, Strasbourg

Même échantillon, autre région, à plus fort grandissement. Image TEM en champ clair J.Werckmann, IPCMS, Strasbourg

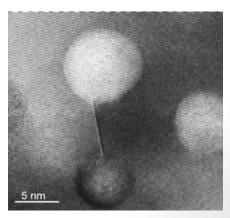
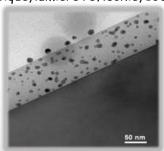


Image haute résolution du même échantillon

Aperçu Préparation d'échantillon D.Laub 2015

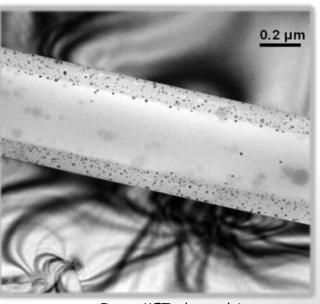
51

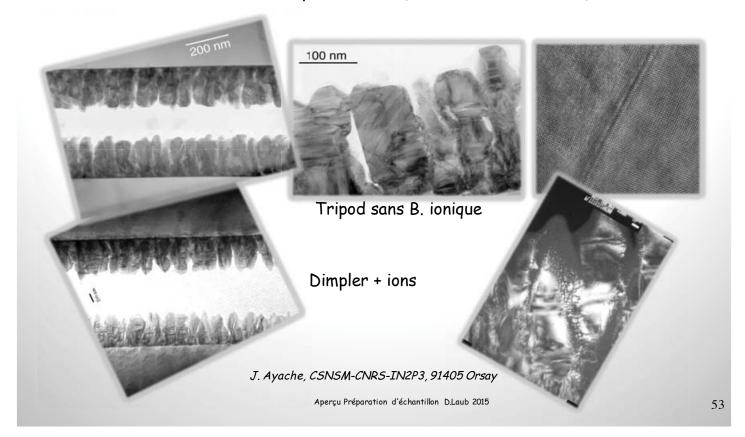
Observation MET



Au/SiO_2 sur substrat Si. Pas de bombardement ionique

Microscopie optique, lumière réfléchie, 1000x

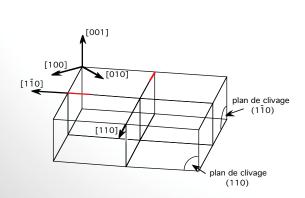


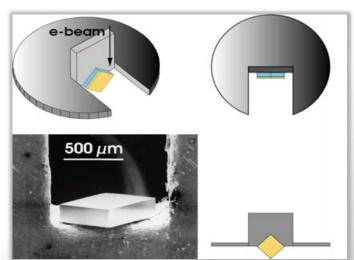

Image MET, champ clair

D. Laub, A. Schüler, S.de Chambrier, EPFL, Lausanne

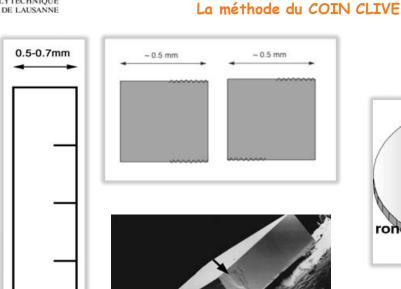
Observation MET

Ferroélectrique PbLaTiO₃ sur substrat SrTiO₃

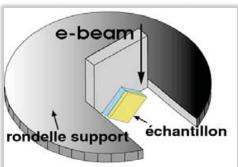




Le coin clivé est un échantillon monocristallin (en ce qui concerne le substrat) d'une dimension d'environ 0.5mm / 0.5mm sur lequel on obtient un coin parfait par deux clivages successifs.

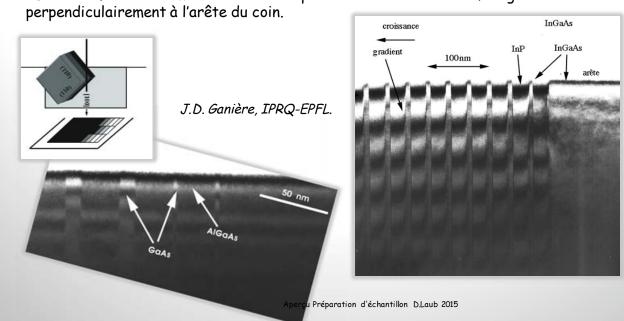

<u>Principe</u>: le clivage utilise le fait que les cristaux peuvent se séparer selon des plans

faiblement liés entre eux



Aperçu Préparation d'échantillon D.Laub 2015

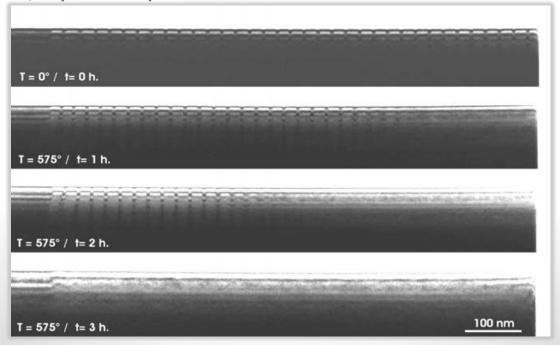
55


La méthode du COIN CLIVE

200 μm

Origine du contraste:

- · Dans le cas d'un coin clivé, l'épaisseur est parfaitement connue en tous points de la zone observée: le profil des franges d'égale épaisseur dépend alors uniquement de la composition chimique.
- · L'observation est faite dans le plan des interfaces.
- · Les interfaces sont mises en évidence par une discontinuité des franges

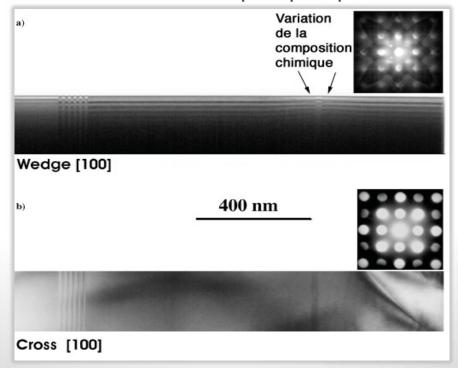

56

La méthode du COIN CLIVE

Quelques exemples

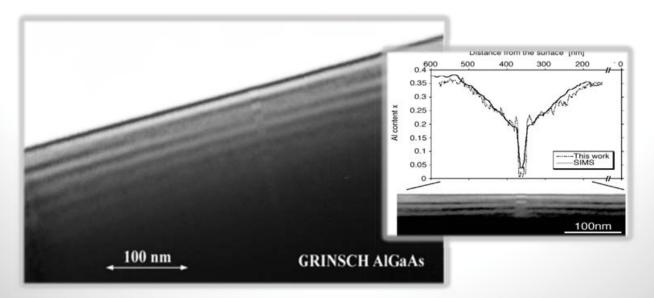
J.D. Ganière, EPFL Destruction de puits quantiques dans AlGaAs par diffusion de Zinc depuis la surface

Aperçu Préparation d'échantillon D.Laub 2015


57

La méthode du COIN CLIVE

Comparaison entre un coin clivé et une coupe transverse "traditionnelle" d'un échantillon à puits quantiques AlGaAs/GaAs

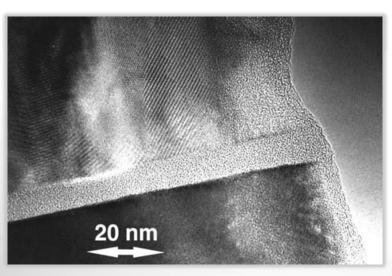


P.A. Buffat, J.D. Ganière, EPFL

Exemple

WTEM Grinsch

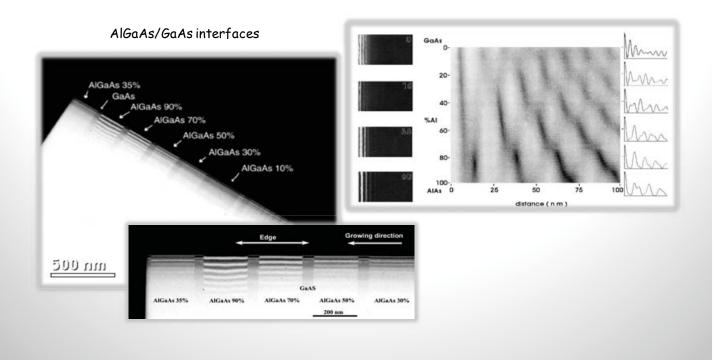
P.A. Buffat, EPFL-CIME, Lausanne


Aperçu Préparation d'échantillon D.Laub 2015

59

La méthode du COIN CLIVE

Si [111] /SiO₂ / poly Si


Cr-Ti 50-50/ substrae Si Supposé croissance colonnaire Confirmation couches Cr/Ti par EELS

La méthode du COIN CLIVE

L'image du positionnement des franges d'égale épaisseur associée à un programme de simulation permet une analyse semi-quantitative de la composition chimique

L'ULTRAMICROTOMIE- LA CRYO-ULTRAMICROTOMIE

Aperçu Préparation d'échantillon D.Laub 2015

61

Coupe d'un échantillon à une épaisseur constante de 20 à 200 nm, à l'aide d'un couteau en diamant, soit à température ambiente, soit à froid (LN₂)

Observations

- Statistique de taille de particules
- · Analyse chimique EDX, analyse chimique EELS (requiert une épaisseur constante)
- Microstructure
- Vue plan ou coupe transverse d'un matériau qui ne peut être soumis aux autres techniques
- · Matériaux divisés de petite tailles (poudre, plaquettes,...)
- Matériaux
- · Polymères
- Catalyseurs
- Matériaux géologiques
- Biomatériaux
- Végétaux
- Métaux

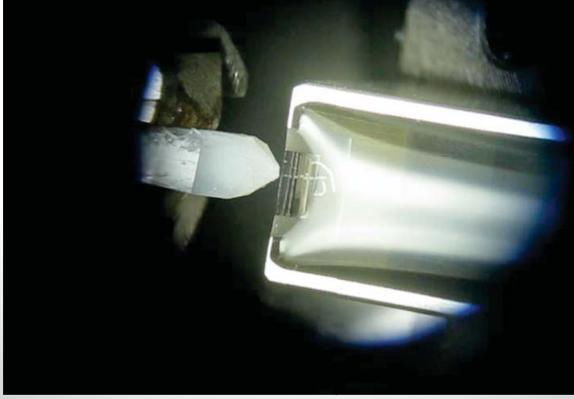
Inconvénients:

- Déformation de l'échantillon due a la compression, fissures
- Dislocations

L'ULTRAMICROTOME

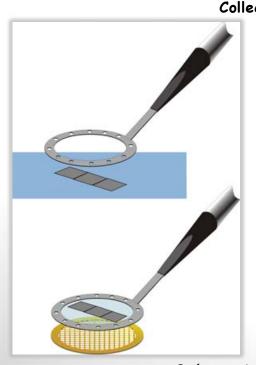
Le microtome

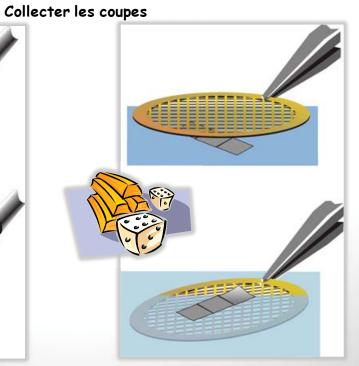
L'ultramicrotomie



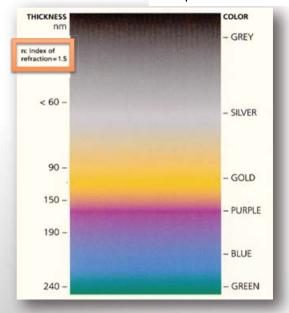
Le couteau en diamant

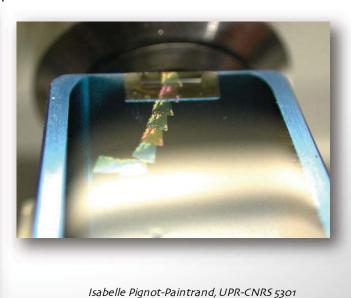
Photo Diatome


Aperçu Préparation d'échantillon D.Laub 2015


65

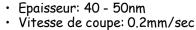
L'ultramicrotomie

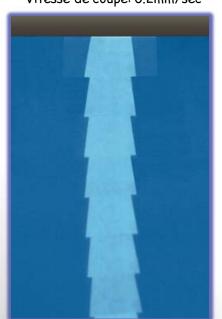

Présentation de Helmut Gnägi, Diatome

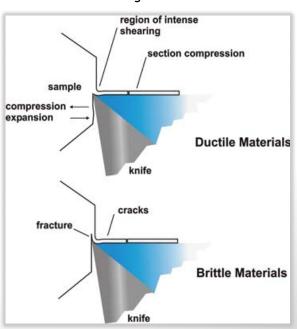

L'ultramicrotomie

La couleur de la résine donne des informations sur:

- · Homogénéité de l'épaisseur de la coupe
- Epaisseur de la coupe

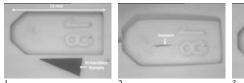

Aperçu Préparation d'échantillon D.Laub 2015


67

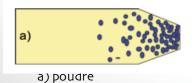

L'ultramicrotomie

Coupe de l'échantillon à l'épaisseur désirée (ou possible!)

Dommages induits

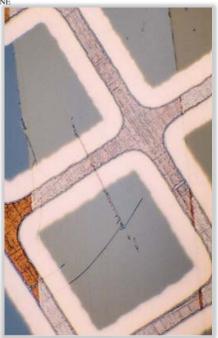

Présentation Helmut Gnägi, Diatome

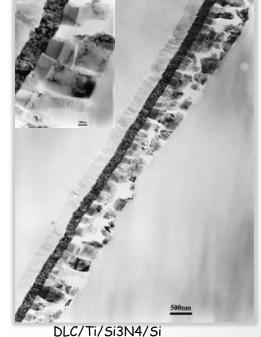
DIFFÉRENTS ENROBAGES



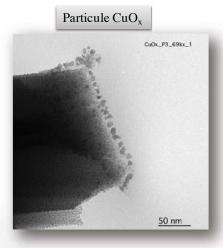
- •Eviter d'enrober si possible (métaux, polymères)
- Réduire la taille de l'échantillon au minimum nécessaire
- Pré-imprégnation si nécessaire

Important: la dureté de la résine après polymérisation devraitêtre la plus proche possible de celle de l'échantillon

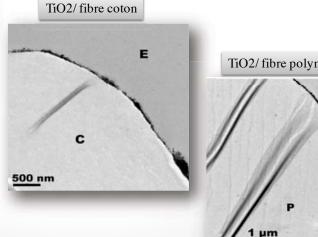


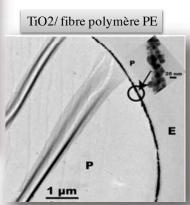

Matériaux poreux: imprégnation-enrobage sous vide

L'ultramicrotomie- exemples de matériaux


Microscopie optique

MET, image en champ clair

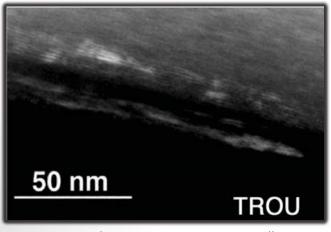

Présentation de Helmut Gnägi, Diatome


L'ultramicrotomie-exemples de matériaux

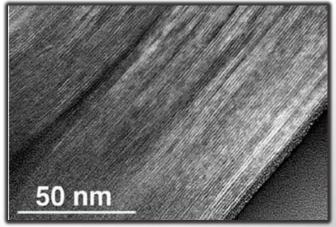
Catalyseur

Aperçu Préparation d'échantillon D.Laub 2015

71



Comparaison Bombardement ionique-Ultramicrotomie


Mica

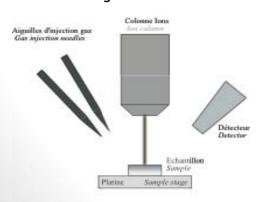
Le polissage mécanique suivit du bombardement ionique a donné de mauvais résultats

Bombardement ionique Gatan Duo Mill

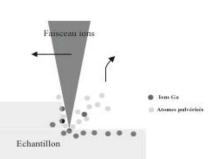
Même échantillon préparé par ultramicrotomie

La cryo-ultramicrotomie

Aperçu Préparation d'échantillon D.Laub 2015

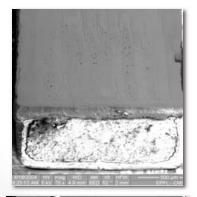

73

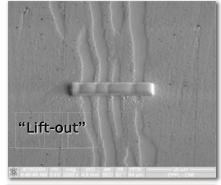
Le FIB (Focused Ion Beam)

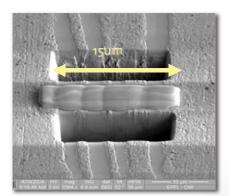


Gaz: généralement Galium

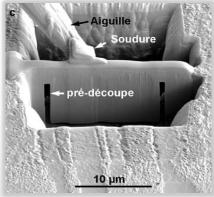
Chambre sous vide Facuum chamber

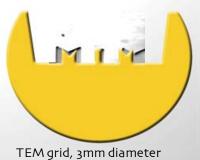


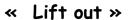


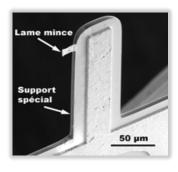


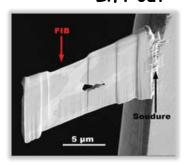
Le FIB (Focused Ion Beam)

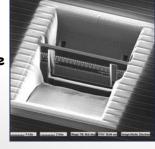


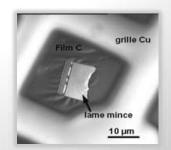





Aperçu Préparation d'échantillon D.Laub 2015


75

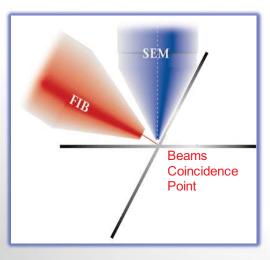


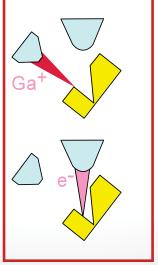


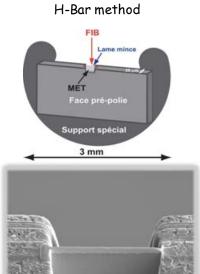
F. Bobard, M. Cantoni, CIME-EPFL

Lift out externe

Aperçu Préparation d'échantillon D.Laub 2015


76

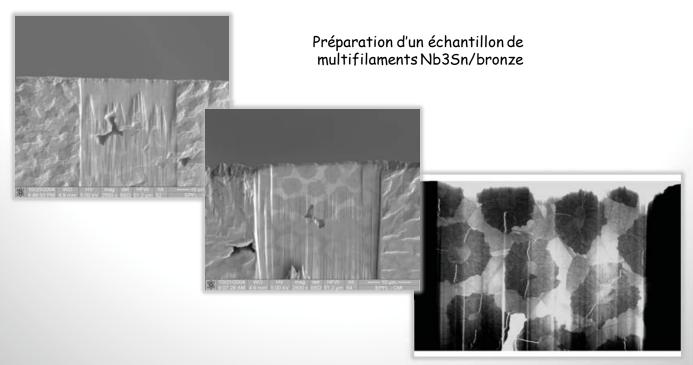

The FIB (Focused Ion Beam)



Pour:

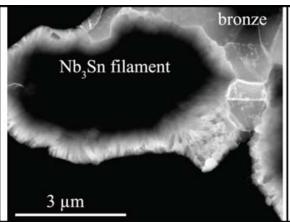
- Vue plane
- Coupe transverse
- Orientation quelconque

F.Bobard, M. Cantoni


Aperçu Préparation d'échantillon D.Laub 2015

77

Le FIB (Focused Ion Beam)



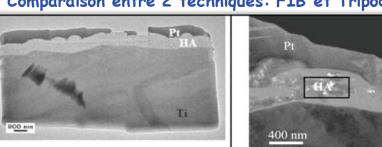
FIB prép.: F.Bobard Images MET: M. Cantoni, CIME-EPFL

Comparison entre techniques: Tripod et FIB

Multifilaments Nb₃Sn dans une matrice de bronze. Méthode tripode + B. ionique faible angle (5°). Seuls les bords du filament et la matrice sont transparent aux électrons.

Même échantillon prepare par FIB.La lamelle a une épaisseur constante, la totalité des filaments et la matrice sont transparents aux electrons

D. Laub/M.Cantoni

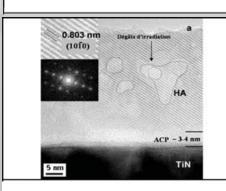

- -

Aperçu Préparation d'échantillon D.Laub 2015

M.Cantoni

79

Comparaison entre 2 techniques: FIB et Tripod


Vue générale d'une lame FIB de HA/TiN/Ti.

mince pour permettre la haute

résolution

(J. Ayache)

Même échantillon préparé par la technique Tripode (le substrat Ti n'est pas visible). Une partie de la couche HA a été perdue pendant le polissage. Malgrès cela et les dégâts d'irradiation, l'observation HRTEM est possible

LE POLISSAGE ÉLECTROLYTIQUE

L'effet du polissage électrolytique est dû à la dissolution anodique d'une surface prépolie dans une cellule électrolytique composée de:

- un réservoir pour l'électrolyte
- une source de courant continu
- une anode (l'échantillon)
- une cathode

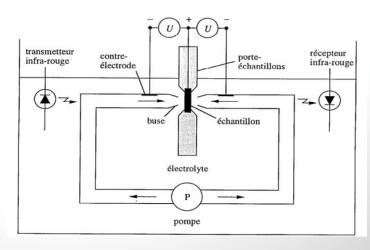
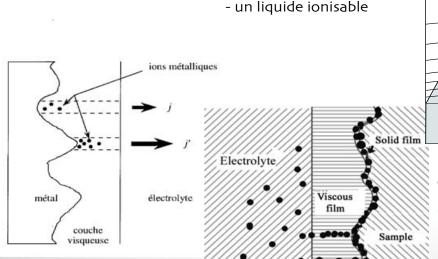


Schéma du polissage électrolytique à double jet

Aperçu Préparation d'échantillon D.Laub 2015

81



Le polissage électrolytique

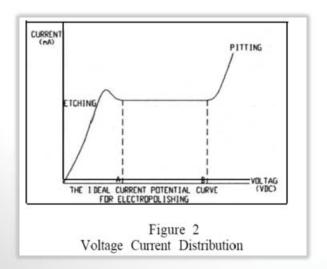
- une solution visqueuse

Solution électrolytique: - un acide ou une base

Electrolyte Bath Current Lines

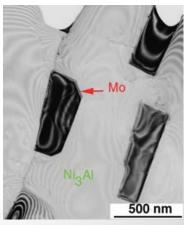
Gradient

Material to be Polished


Densité de courant proportionnelle au gradient:

plus faible dans les creux, plus forte sur les pointes

= nivellement de la rugosité



«Plateau»

Observations:

- dislocations (orientation)
- macles
- études des interfaces granulaires
- précipités et mélange de phases
- etc.

Matrice Ni₃Al, fibres Mo Image MET en champ sombre

Aperçu Préparation d'échantillon D.Laub 2015

83

Le polissage électrolytique

Principalement pour une vue en plan

MATÉRIAUX CONDUCTEURS ÉLECTRIQUES:

- Métaux et alliages, généralement monophasés, quelques bi ou polyphasés
- ■Carbures
- ■Graphite
- Certains oxydes
- ■Certains matériaux composites à matrice métallique

AVANTAGES: méthode non destructive

INCONVENIENTS: risque d'attaque préférentielle, dissolution d'une phase ou de l'interface, éventuellement couche résiduelle d'oxyde en surface

Matériaux:

- oxydes

- verre - etc.

LE POLISSAGE CHIMIQUE

Même principe que le polissage électrolytique mais moins contrôlable Solutions plus réactives utilisées à plus haute température

Observations: vue en plan ou coupe transverse

Méthode:

- · découpage ou procédure de coupe transverse
- polissage sur feutre spécifique pour l'adjonction de produits chimiques
- attaque chimique jusqu'à l'obtention d'un trou
- métaux - semi-conducteurs
 - AVANTAGES: possible avec des matériaux non conducteurs

INCONVÉNIENTS: attaque préférentielle au niveau des dislocations (etch pits), éventuellement couche d'oxydation résiduelle à la surface de l'échantillon

Aperçu Préparation d'échantillon D.Laub 2015

85

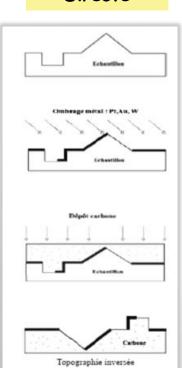
LA MÉTHODE DES RÉPLIQUES

REPRODUCTION DE LA TOPOGRAPHIE DE SURFACE OU EXTRACTION DE PARTICULES

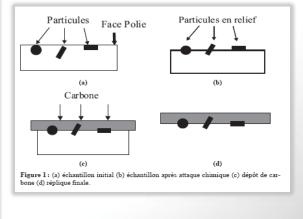
Observations

- ·Matériel multiphasé
- Topographie
- ·Particules de seconde phase (réplique extractive)
- Echantillons irradiés

Méthode


- ·Dépôt d'un film à la surface de l'échantillon, soit un polymère mou ou polymère rendu mou par un solvant, soit par un dépôt de carbone ou d'oxyde. (La réplique en polymère doit ensuite être « carbonnée » pour la conduction électrique).
- Séparation film-échantillon dans par trempage solvant, par arrachage doux ou par dissolution de la matrice
- ·Montage de la réplique sur un support pour MET

Réplique

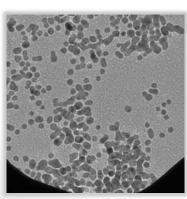

Directe

Polymère Polymère

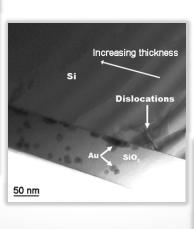
Topographie non inversée

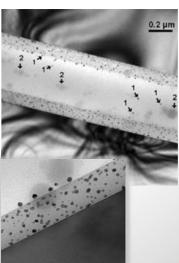
Extractive

87



Comparaison entre plusieurs techniques:




Dispersion de particules - Coin Clivé et Tripode

Particules Au

SiO₂/Au sur substrat Si

La préparation d'échantillon c'est comme...

·.. la cuisine!!!...

il faut l'adapter à votre sensibilité et aux ingrédients dont vous disposez!

Aller aussi sur: Google: « temsamprep » ou «http://temsamprep.in2p3.fr »: Site didactique de méthodes de préparation d'échantillons

Aperçu Préparation d'échantillon D.Laub 2015

89